ground state energy E_0 , distance 2 ζ) in case of $q^2 \gg 1$, the tunneling energy is given by [6, 7]

$$\Omega = \frac{h^2}{\sqrt{\pi} \ m \ \zeta^2} \ q^3 \exp\left(-\ q^2\right) \ ; \qquad q^2 \equiv \frac{2 \ m \ E_0 \ \zeta^2}{h^2}. \tag{6}$$

Thus,

$$\frac{\mathrm{d}\Omega}{\mathrm{d}\zeta} = -\left(2\,q^2 - 1\right)\frac{\Omega}{\zeta}.\tag{7}$$

By substituting (4), (5), (6), and (7) in (3) we find

$$\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}p} = \frac{T_{\mathrm{c}}}{\zeta} \frac{\mathrm{d}\zeta}{\mathrm{d}p} \left[\frac{kT_{\mathrm{c}}}{2\Omega^{2}} \left(\sinh \frac{\Omega}{kT_{\mathrm{c}}} \right)^{2} + (2q^{2} - 1) \left(\frac{kT_{\mathrm{c}}}{2\Omega} \sinh \frac{2\Omega}{kT_{\mathrm{c}}} - 1 \right) \right]. \tag{8}$$

We introduce $\zeta^{-1} d\zeta/dp = -\alpha S_1$ with $S_1 = a^{-1} da/dp = s_{11} + s_{12} + s_{13}$, and $\alpha = (a/\zeta) d\zeta/da$, a being the lattice constant, and s_{ij} the elastic compliances. Finally, after eliminating J by means of equation (2) we obtain

$$\frac{\mathrm{d}T_{\rm c}}{\mathrm{d}p} = -\alpha \, S_1 \, T_{\rm c} \left[2 + (2 \, q^2 + 1) \left(\frac{kT_{\rm c}}{2 \, \Omega} \sinh \frac{2 \, \Omega}{kT_{\rm c}} - 1 \right) \right]. \tag{9}$$

The second term in the square bracket of equation (9) describes the effect of proton tunneling on the shift of $T_{\rm c}$ with pressure. It is a positive quantity and may be neglected under the condition $\Omega/kT_{\rm c} \ll 1$ which can be considered to be fulfilled for the deuterated crystals.

Since α is a positive quantity $(\mathrm{d}\zeta/\mathrm{d}a>0)$, the transition temperature T_c , according to equation (9), is always shifted towards lower temperatures with pressure. At given T_c the shift increases with increasing Ω . In Fig. 5, the pressure shift $-\mathrm{d}T_c/\mathrm{d}p$ is represented as a function of T_c according to equation (9), with $\alpha S_1 = 9.4 \times 10^{-3} \,\mathrm{kbar^{-1}}$. This value has been chosen so that for $\mathrm{KD_2PO_4}$ $(\Omega/kT_c \ll 1)$ equation (9) gives $\mathrm{d}T_c/\mathrm{d}p = -3.9 \,\mathrm{deg/kbar}$ $(T_c = 208\,\mathrm{^\circ K})$ which was measured by Samara [2]. The value of αS_1 found for $\mathrm{KD_2PO_4}$ can also be taken in good approximation for $\mathrm{KH_2PO_4}$. Then equation (9) can be used to determine Ω from the measured value of $\mathrm{d}T_c/\mathrm{d}p$. The necessary relation between q and Ω is given by equation (6). For $\mathrm{KH_2PO_4}$ we use $\zeta = 0.19 \,\mathrm{A}$ [13] and obtain $\Omega/k = 79\,\mathrm{^\circ K}$ or $\Omega = 1.09 \times 10^{-14} \,\mathrm{erg}$. This

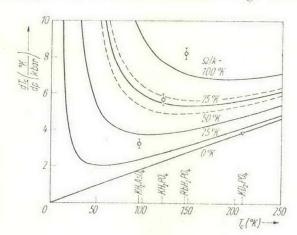


Fig. 5. Pressure shift $-\mathrm{d}\,T_{\rm c}/\mathrm{d}\,p$ as a function of the phase-transition temperature $T_{\rm c}$ according to (9) for various values of $Q_{\rm c}$. The curves were fitted to the measured value [2] for KD₂PO₁ (cf. the text). For the parameter value $\Omega(k=75^{\circ}\text{K})$ also curves with Z=0.15 Å and Z=0.25 Å in dashed lines are given in addition to the curve with $\zeta=0.19$ Å